skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Attia, Mohamed"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Data shuffling between distributed workers is one of the critical steps in implementing large-scale learning algorithms. The focus of this work is to understand the fundamental trade-off between the amount of storage and the communication overhead for distributed data shuffling. We first present an information theoretic formulation for the data shuffling problem, accounting for the underlying problem parameters (i.e., number of workers, K, number of data points, N, and the available storage, S per node). Then, we derive an information theoretic lower bound on the communication overhead for data shuffling as a function of these parameters. Next, we present a novel coded communication scheme and show that the resulting communication overhead of the proposed scheme is within a multiplicative factor of at most 2 from the lower bound. Furthermore, we introduce an improved aligned coded shuffling scheme, which achieves the optimal storage vs communication trade-off for K <; 5, and further reduces the maximum multiplicative gap down to 7/6, for K ≥ 5. 
    more » « less
  5. Private information retrieval (PIR) allows a user to retrieve a desired message out of K possible messages from N databases (DBs) without revealing the identity of the desired message. In this work, we consider the problem of PIR from uncoded storage constrained DBs. Each DB has a storage capacity of μKL bits, where L is the size of each message in bits, and μ ∈ [1/N, 1] is the normalized storage. In the storage constrained PIR problem, there are two key challenges: a) construction of communication efficient schemes through storage content design at each DB that allow download efficient PIR; and b characterizing the optimal download cost via information-theoretic lower bounds. The novel aspect of this work is to characterize the optimum download cost of PIR with storage constrained DBs for any value of storage. In particular, for any (N, K), we show that the optimal tradeoff between storage (μ) and the download cost (D(μ)) is given by the lower convex hull of the pairs ([t/N](1+[1/t]+[1/(t 2 )]+...+[1/(t K-1 )])) for t = 1,2, ..., N. The main contribution of this paper is the converse proof, i.e., obtaining lower bounds on the download cost for PIR as a function of the available storage. 
    more » « less